## Session: Strengthening Pathways to Student Success



- Organizers:
  - *Elizabeth J. Orwin*, Dean, School of Engineering and Computer Science, University of the Pacific
  - Nancy Warter-Perez, Dean of the College of Engineering, Computer Science, and Technology (ECST) at California State University, Los Angeles
  - Sharon Zelmanowitz, Dean of Engineering and Cyber Systems, US Coast Guard Academy
  - Durga Suresh-Menon, Dean, Wentworth Institute of Technology







- 5-minute "vignettes" on each of four topics
- (4-4:30pm) Table discussions
  - Goal: each person determines one takeaway idea that they will take back and try at their institutions
- (4:30-4:45pm) Share takeaways from tables; summarize key themes





### **Speakers and Topics**

- Metacognition/self awareness in students
  - Nancy K. Lape, Professor and Chair of Engineering, Harvey Mudd College: Increasing Students' Sense of Agency
- Improving culture in STEM spaces
  - Gustavo Menezes, Professor and Chair of the Department of Civil Engineering at Cal State LA : Eco-STEM Peer Observation Tool and Resource Repository
- Student success and equity
  - Susan M. Lord, Professor and Chair of Integrated Engineering, University of San Diego: Sociotechnical Modules in Required Classes
- Student retention
  - Shelly Gulati, Assistant Dean of Interdisciplinary Programs, Teaching Excellence, and Inclusion, University of the Pacific: First Year Advising Program

PACIFIC School of Engineering and Computer Science





# Increasing students' sense of agency via a prototyping mindset

ASEE EDI April 15, 2024

Nancy Lape Chair, Engineering Harvey Mudd College



### Why prototype?



dyson.com



### What is a prototyping mindset?

#### **Prototyping Mindset:**

Willingness to test out a solution that may not be the final or best solution, learn from the trial, and evolve the design.

#### **Bias towards action!**









### Prototyping Mindset: Why and How



#### The main challenge:

Students feel they lack agency in their college experience and future career.

#### The intervention:

Two courses – one for sophomores and one for seniors – that employ techniques of human-centered design\* paired with weekly life-design prototypes

\* Significant credit to Stanford's Life Design Lab



### Prototyping Mindset: Why and How



#### The main challenge:

Students feel they lack agency in their college experience and future career.

#### The intervention:

Two courses – one for sophomores and one for seniors – that employ techniques of human-centered design\* paired with weekly life-design prototypes

\* Significant credit to Stanford's Life Design Lab



### What is a Life Design prototype?

#### Going out and taking action (not research!)

- 1. **Prototype Experiences**, e.g.
  - Sophomores joined Clinic team meetings to learn more about what it is like to work on certain projects
  - Students went to a Club meeting
  - Students tried out a new schedule
- 2. Prototype Conversations, e.g.
  - Students practiced their "story of me" and getting to a "story of us" with a network connection
  - Students spoke with alumni about their experiences



### What is a Life Design prototype?

#### Going out and taking action (not research!)

#### 1. **Prototype Experiences**, e.g.

- Sophomores joined Clinic team meetings to learn more about what it is like to work on certain projects
- Students went to a Club meeting
- Students tried out a new schedule
- 2. Prototype Conversations, e.g.
  - Students practiced their "story of me" and getting to a "story of us" with a network connection
  - Students spoke with alumni about their experiences



### What is a Life Design prototype?

#### Going out and taking action (not research!)

#### 1. **Prototype Experiences**, e.g.

- Sophomores joined Clinic team meetings to learn more about what it is like to work on certain projects
- Students went to a Club meeting
- Students tried out a new schedule

#### 2. Prototype Conversations, e.g.

- Students practiced their "story of me" and getting to a "story of us" with a network connection
- Students spoke with alumni about their experiences



### Prototyping Your Mudd (sophomores)

- Modules include:
  - Purpose of college
  - Exploring technical interests
  - 4 quadrants
  - Networking and Informational interviews
- Prototypes include conversations with seniors, faculty, alumni, and a cold network connection
- Final assignment/prototype: HMC Wayfinding Map + learnings and unlearnings



### Prototyping Your Future Self (seniors)

- Modules include:
  - Success, Worldview, Workview
  - Elevator conversations
  - Decision making
  - Networking
  - Mentors and community
- Prototypes include conversations with alumni and network connections and several design-your-own prototypes
- Final assignment/prototype: Odyssey Plan + learnings and unlearnings





#### **Increases in:**

- I am confident that I can design my degree to meet my interests and career aspirations.
- I expect that my work/career beyond HMC will align with my values.
- I am confident that I can design a career that fits who I want to be.
- I am confident that I could effectively work on a problem that does not have an obvious solution.





#### **Increases in:**

- I am confident that I can design my degree to meet my interests and career aspirations.
- I expect that my work/career beyond HMC will align with my values.
- I am confident that I can design a career that fits who I want to be.
- I am confident that I could effectively work on a problem that does not have an obvious solution.





#### **Increases in:**

- I am confident that I can design my degree to meet my interests and career aspirations.
- I expect that my work/career beyond HMC will align with my values.
- I am confident that I can design a career that fits who I want to be.
- I am confident that I could effectively work on a problem that does not have an obvious solution.





#### **Increases in:**

- I am confident that I can design my degree to meet my interests and career aspirations.
- I expect that my work/career beyond HMC will align with my values.
- I am confident that I can design a career that fits who I want to be.
- I am confident that I could effectively work on a problem that does not have an obvious solution.

**Department of Engineering** 

If you want to know more, email me at lape@hmc.edu!

Improving Equity and Inclusion Culture in STEM Spaces: An ecosystem-based (ECO-STEM) Peer Observation Process







**Eco-STEM Peer Observation - https://t.ly/0BHCN** 

#### **Observable Behaviors**

| Principles                                                     | Observable Behaviors                                                                                   |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Climate: supportive, inclusive and recognizing cultural assets |                                                                                                        |  |
| C1: Knows students<br>as individuals                           | C1.1: Used students' names                                                                             |  |
|                                                                | C1.2: Talked with students informally before or after class                                            |  |
|                                                                | C1.3: Showed knowledge of students' interests beyond the class                                         |  |
| C2: Encourages questions                                       | C2.1: Promoted a classroom environment where questions are valued                                      |  |
|                                                                | C2.2: Expressed curiosity about student thought process                                                |  |
|                                                                | C2.3: Emphasized to students that making mistakes is a normal and healthy part of the learning process |  |
|                                                                | C3.1: Encouraged students to continue to try when stuck                                                |  |
| C3: Expresses belief in<br>students'<br>capacity and potential | C3.2: Affirmed to students that they are capable to do the work                                        |  |
|                                                                | C3.3: Projected a successful future for students (career, graduation)                                  |  |
|                                                                | C3.4: Promoted a growth mindset in students                                                            |  |
| C4: Creates an inclusive environment                           | C4.1: Presented divergent viewpoints where appropriate                                                 |  |
|                                                                | C4.2: Did not embarrass or belittle students                                                           |  |
|                                                                | C4.3: Showed respect and sensitivity to diverse learners, including different ways of knowing          |  |
|                                                                | C4.4: Adequately addressed student concerns                                                            |  |
| C5: Recognizes Cultural<br>Assets                              | C5.1: Acknowledged students' past experiences                                                          |  |
|                                                                | C5.2: Valued and celebrated different ways of problem solving                                          |  |
|                                                                | C5.3: Acknowledged and supported student resilience in the face of difficulties                        |  |
| Structure: facilitate the learning process                     |                                                                                                        |  |

| S1: Provides clear<br>goals/outcomes | S1.1: Provided purpose and learning outcomes of the lesson                                             |
|--------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                      | S1.2: Placed the lesson into the overall arc of the course                                             |
|                                      | S1.3: Gave clear instructions on activities and assignments and tied them to student learning outcomes |
|                                      |                                                                                                        |

| S4: Structures activities to develop effective learners             | S4.1: Used a variety of instructional activities                                                                                              |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | S4.2: Used scaffolded activities                                                                                                              |
|                                                                     | S4.3: Used activities that requires students to explain their approach to the solutions, recognize structure, etc. (metacognitive components) |
|                                                                     | S4.4: Asked students to generate their own explanations and justify their thinking                                                            |
|                                                                     | S4.5: Included reflection activities (e.g., muddiest point, one-minute paper, exam corrections)                                               |
| Vibrancy: activity a                                                | nd level of engagement                                                                                                                        |
| V1: Communicates<br>passion for the discipline                      | V1.1: Shared current developments in the discipline                                                                                           |
|                                                                     | V1.2: Projected genuine enthusiasm about the discipline                                                                                       |
|                                                                     | V1.3: Provided opportunities for students to share new developments in the field                                                              |
| V2: Uses active<br>learning properly                                | V2.1: Addressed student questions and comments                                                                                                |
|                                                                     | V2.2: Provided group tasks that promoted knowledge construction in community and higher-<br>level thinking                                    |
|                                                                     | V2.3: Synthesized group work at conclusion of collaborative activity                                                                          |
|                                                                     | V2.4: Developed student learning through active participation in lesson activities                                                            |
| V3: Promotes healthy and<br>productive dynamics<br>between students | V3.1: Encouraged students to answer each other's questions                                                                                    |
|                                                                     | V3.2: Encouraged groups to ensure that all students have an opportunity to speak and are listened to                                          |
|                                                                     | V3.3: Enforced respectful behavior and kindness between students                                                                              |
|                                                                     | V3.4 Facilitated effective group work through assignment of roles and group selection                                                         |
|                                                                     | V3.5: Intervened as necessary to hold class to pre-agreed-upon community norms                                                                |
| V4: Stimulates a high level<br>of student engagement                | V4.1: Provided varied opportunities for students to apply newly learned content                                                               |
|                                                                     | V4.2: Adopted strategies and activities that captivate disengaged students                                                                    |
|                                                                     | V4.3: Students readily participated in in-class activities                                                                                    |
|                                                                     | V4.4: Gave students recurring opportunities to engage with other students in small groups or as whole class                                   |

#### Focus: Faculty Assets

#### Asset-Based Peer Observation Process



Observee Selects 10-15 behaviors they want to be observed on



Discuss overarching goals for the observation. Narrow list to 8-10 behaviors and generate Tailored Observation Tools



Peer observation takes place



Meet to Debrief









### Sociotechnical Modules in Required Classes



### Susan M. Lord

Professor and Chair of Integrated Engineering University of San Diego









### **Guidelines for Sociotechnical Integration**



- Identify a course topic that ties to something broader and a learning objective that this fits with
- Craft learning objectives for your activity
  - Design homework, exam questions, and activities for class
- Help students connect topic issues to everyday lives
- Connect social context and technical content so students see this as "real world engineering" not "add-on"



National Science Foundation VHERE DISCOVERIES BEGIN





# "Conflict Minerals" Module (Circuits)

- 2<sup>nd</sup> year students
- Connect capacitors to Tantalum to Conflict Minerals

By the end of this *course*, students will be able to

 Explain two examples of how electrical circuits relate to their everyday lives.

By the end of this *module*, students will be able to

 Describe potential options for engineers concerned with the use of conflict minerals

S. Lord, B. Przestrzelski and E. Reddy, "Teaching Social Responsibility in a Circuits Class," ASEE 2019.



### What are "Conflict Minerals"?

- Minerals that are mined in the Democratic Republic of the Congo (DRC) and surrounding areas where income from mining used to finance armed conflict.
- Commonly known as
  "3TGs": Tungsten, Tin,
  Tantalum, and Gold
- Common in consumer electronics



Electronics 360 (2013) and Australian Travel Warnings (2018)

### "Conflict Minerals" Module (Circuits)

 Homework 1: How much Tantalum (Ta) used globally in capacitors (a course topic) within smart phones? Where is Ta mined?



- Class 1:
  - Multidisciplinary instructor team introduced students to definition of conflict minerals & conflicts in the DRC
  - How could we minimize use of conflict minerals as engineers?





### DRC



**Google Maps and Black Panther (2018)** 



### Student feedback

- "Obviously we looked at a lot of stuff that wasn't engineering including the conflict minerals ... which I thought was really cool. And that was very clearly ... engineering but at the same time it was very clearly like looking at it from different angles."
- "The conflict minerals thing was huge ... one thing I had never realized was how much one little electric component that's so important can affect like everyone ... or can affect those people in underdeveloped nations"
- "How could I be 20 years old and have never heard of this?"

### Current Research: Helping Others Integrate

• Why don't most engineering instructors integrate sociotechnical issues in the classroom?





• Solution: Make it as easy as possible. Provide resources!







### Sociotechnical Modules in Circuits

- Develop modules with lesson plans, slides, script, homework and exam problems, and assessment materials
- Selected 8 graduate students to help develop modules --"Sociotechnical Electrical Engineering Stars" (SEES) cohort
- Interested in testing our modules in *Intro to Circuits*?

### tinyurl.com/circuits-modules





### Student Retention-First Year Advising Program

April 15, 2024



### First Year Advising Program

#### Aims

- Highly engaged and supportive developmental advising
- Develop student-advisor relationship to promote student success, persistence, and satisfaction with the college experience
- Support achievement of advising learning outcomes:
  - Assess your learning strategies
  - Design a curricular plan
  - Prepare a future plan

PACIFIC 3

School of Engineering and Computer Science

#### **Program Structure**

- 1:1 faculty advising meetings
- Self-efficacy and metacognition learning modules on in First Year Experience course
- Career advising programming (optional career management badge)





### Assessment

- Participation data (% of attendance at 6 meetings)
- Achievement of learning outcomes
  - Resume completion
  - Express how major aligns with skills, abilities, interests (% met expectation)
- Academic performance (GPA)
- Persistence
- Student survey
- Advisor feedback

PACIFIC School of Engineering and Computer Science

Cohort 1 Cohort 2 Cohort 3 **Entry Year** AY 23-24 AY 21-22 AY 22-23 **First-Years Class Standing** Juniors **Sophomores** Class size 107 134 109 Ave % Meeting 82% 77% Participation Persistence (to 83% 92% second year) Year 1 GPA 2.89 3.04 91% 81% Resume completion 69% 90% Major Alignment

### Persistence

- 10 year high for students entering AY 22-23 -- 92%
- Ave of ~87% from AY13-14 to AY19-20
- Dip to ~82% in AY 20-21 and 21-22 likely influenced by the pandemic

#### **Complimentary Structures**



PACIFIC

School of Engineering and Computer Science



- Feelings of community
  - School Community Inventory (SCI)\* results of agree to strongly agree
  - 68% in Sp22
  - 70% in Sp23
- Satisfaction with advising experience and meeting frequency

#### Level of satisfaction with advising experience



#### Meeting Frequency Feedback AY22-23



\* Rovai et al. (2004)

#### **Student Survey**

• Academic confidence



#### Feedback on Advisor



### **Other Comments**

- Faculty Advisor considerations
  - Workshop on self-efficacy and metacognition
  - Summer 1:1 compensated with stipend
  - Academic year efforts counted in teaching workload
- Faculty advisor comments:
  - Valued frequent meetings in first year in getting to know their advisee
  - Connection with metacognitive assignments led to richer discussions
  - Students asked for support earlier in the semester
- PACIFIC Sch

School of Engineering and Computer Science

- Too many meetings? Consider 4 instead?
- Students tend not to do things that are not required especially if they are scary, e.g. go to a career fair
- Advisor commitment to the program is essential



### **Discussion Questions**

- What are the first ideas that pop into your mind after hearing the presentations?
- Is your institution doing something similar to anything you heard?
- How might you modify something you heard from one of the speakers to implement at your institution?
- Do you have new ideas to share?
- GOAL: write down/email to yourself one takeaway idea that you will take back and try at your institution

